Low-pH-dependent fusion of Sindbis virus with receptor-free cholesterol- and sphingolipid-containing liposomes.

نویسندگان

  • J M Smit
  • R Bittman
  • J Wilschut
چکیده

There is controversy as to whether the cell entry mechanism of Sindbis virus (SIN) involves direct fusion of the viral envelope with the plasma membrane at neutral pH or uptake by receptor-mediated endocytosis and subsequent low-pH-induced fusion from within acidic endosomes. Here, we studied the membrane fusion activity of SIN in a liposomal model system. Fusion was followed fluorometrically by monitoring the dilution of pyrene-labeled lipids from biosynthetically labeled virus into unlabeled liposomes or from labeled liposomes into unlabeled virus. Fusion was also assessed on the basis of degradation of the viral core protein by trypsin encapsulated in the liposomes. SIN fused efficiently with receptor-free liposomes, consisting of phospholipids and cholesterol, indicating that receptor interaction is not a mechanistic requirement for fusion of the virus. Fusion was optimal at pH 5.0, with a threshold at pH 6.0, and undetectable at neutral pH, supporting a cell entry mechanism of SIN involving fusion from within acidic endosomes. Under optimal conditions, 60 to 85% of the virus fused, depending on the assay used, corresponding to all of the virus bound to the liposomes as assessed in a direct binding assay. Preincubation of the virus alone at pH 5.0 resulted in a rapid loss of fusion capacity. Fusion of SIN required the presence of both cholesterol and sphingolipid in the target liposomes, cholesterol being primarily involved in low-pH-induced virus-liposome binding and the sphingolipid catalyzing the fusion process itself. Under low-pH conditions, the E2/E1 heterodimeric envelope glycoprotein of the virus dissociated, with formation of a trypsin-resistant E1 homotrimer, which kinetically preceded the fusion reaction, thus suggesting that the E1 trimer represents the fusion-active conformation of the viral spike.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biochemical consequences of a mutation that controls the cholesterol dependence of Semliki Forest virus fusion.

The enveloped alphavirus Semliki Forest virus (SFV) infects cells via a low-pH-triggered membrane fusion reaction that requires cholesterol and sphingolipid in the target membrane. Cholesterol-depleted insect cells are highly resistant to alphavirus infection and were used to select srf-3, an SFV mutant that is approximately 100-fold less cholesterol dependent for infection due to a single amin...

متن کامل

Rapid membrane fusion of individual virus particles with supported lipid bilayers.

Many enveloped viruses employ low-pH-triggered membrane fusion during cell penetration. Solution-based in vitro assays in which viruses fuse with liposomes have provided much of our current biochemical understanding of low-pH-triggered viral membrane fusion. Here, we extend this in vitro approach by introducing a fluorescence assay using single particle tracking to observe lipid mixing between ...

متن کامل

Adaptation of Alphaviruses to Heparan Sulfate: Interaction of Sindbis and Semliki Forest Virus with Liposomes Containing Lipid-Conjugated Heparin

Passage of Sindbis virus (SIN) in BHK-21 cells has been shown to select for virus mutants with high affinity for the glycoaminoglycan heparan sulfate (HS). Three loci in the viral spike protein E2 have been identified (E2:1; E2:70; E2:114), which mutate during adaptation and independently confer the ability to the virus to bind to cell-surface HS (W.B. Klimstra et al., J. Virol. 72:7357-7366, 1...

متن کامل

Adaptation of alphaviruses to heparan sulfate: interaction of Sindbis and Semliki forest viruses with liposomes containing lipid-conjugated heparin.

Passage of Sindbis virus (SIN) in BHK-21 cells has been shown to select for virus mutants with high affinity for the glycosaminoglycan heparan sulfate (HS). Three loci in the viral spike protein E2 (E2:1, E2:70, and E2:114) have been identified that mutate during adaptation and independently confer on the virus the ability to bind to cell surface HS (W. B. Klimstra, K. D. Ryman, and R. E. Johns...

متن کامل

PE2 cleavage mutants of Sindbis virus: correlation between viral infectivity and pH-dependent membrane fusion activation of the spike heterodimer.

The spike glycoprotein E2 of Sindbis virus (SIN) is synthesized in the infected cell as a PE2 precursor protein, which matures through cleavage by a cellular furin-like protease. Previous work has shown that SIN mutants impaired in PE2 cleavage are noninfectious on BHK-21 cells, the block in infection being localized at a step after virus-receptor interaction but prior to RNA replication. Here,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 73 10  شماره 

صفحات  -

تاریخ انتشار 1999